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Abstract. We investigate numerically and analytically Potts models on ‘thin’ random graphs—
generic Feynman diagrams, using the idea that such models may be expressed as theN → 1
limit of a matrix model. The thin random graphs in this limit are locally tree-like, in distinction
to the ‘fat’ random graphs that appear in the planar Feynman diagram limit,N → ∞, more
familiar from discretized models of two-dimensional gravity.

The interest of the thin graphs is that they give mean-field theory behaviour for spin models
living on them without infinite range interactions or the boundary problems of genuine tree-like
structures such as the Bethe lattice.q-state Potts models display a first-order transition in the
mean field forq > 2, so the thin-graph Potts models provide a useful test case for exploring
discontinuous transitions in mean-field theories in which many quantities can be calculated
explicitly in the saddle-point approximation.

Such discontinuous transitions also appear in multiple Ising models on thin graphs and may
have implications for the use of the replica trick in spin-glass models on random graphs.

1. Introduction and reprise of continuous transitions

A simple and elegant method of describing spin models on random graphs, drawing
inspiration from the matrix model methods [1] used to describeplanar random graphs in
two-dimensional gravity, was proposed in [2]. It was observed that the requisite ensemble of
random graphs of unrestricted topology could be thought of as arising from the perturbative
Feynman diagram expansion of a scalar integral in much the same manner as the planar
graphs that appear in two-dimensional gravity theories were generated from the perturbative
expansion of a matrix integral. In effect, the unrestricted random graphs appear in the
N → 1 limit of an N × N Hermitian matrix model, which we denote as ‘thin’ graphs,
to distinguish them from the planar ‘fat’ graphs which appear in theN → ∞ limit and
still retain their matrix structure. Remarkably, analogous saddle point methods have also
been independently derived starting from a probabilistic viewpoint by Whittle in a series of
papers [3].

Throughout the paper we will use ‘thin graphs’ and ‘Feynman diagrams’ interchangeably
to denote the random graphs of unrestricted topology on which our spin models live.
Spin models on random graphs are of interest as they will display mean-field behaviour
because the graphs have a tree-like local structure [4]. The advantage of using random
graphs, which are closed, over genuine tree-like structures such as the Bethe lattice is that
dominant boundary effects are absent. The complications, both analytical and numerical, of
being forced to consider only sites deep within the lattice are thus absent. Other ways of
accessing mean-field behaviour, such as infinite range interactions, are not very well suited
for numerical simulation.

0305-4470/97/217349+15$19.50c© 1997 IOP Publishing Ltd 7349



7350 D A Johnston and P Plech´ač

In previous papers we showed that the thin graphs of the Feynman-diagram expansion
offered a practical method of investigating mean-field models both analytically and
numerically. The equilibrium behaviour of ferromagnetic Ising models [5] and spin glasses
[6] was found to parallel that of the equivalent model on the appropriate Bethe lattice
with the same number of neighbours [7], and the analytical treatment offered a different
perspective to previous approaches to random-graph spin models and spin glasses [5, 6].
The investigation of dynamical phenomena such as ageing effects in spin glasses [10]
was also found to be facilitated by random-graph simulations. Other authors have also
employed random graphs in simulations of the random-field Ising model [11] in order to
avoid boundary problems with the Bethe lattice.

Analytical calculations using the approach of [2, 3] involve simple saddle-point methods
for standard integrals, or quantum-mechanical path integrals in the case of continuous spins
[12]. Such calculations are familiar in the context of estimations of large-order behaviour in
perturbation theory for quantum-mechanical [13] and field-theoretical path integrals [14, 15]
and vacuum decay effects [16].

If we consider undecorated random graphs, taking aφ3 theory for definiteness which
will generate 3-regular random graphs†, the number of such graphs with 2n vertices can be
calculated as

Nn = 1

2π i

∮
dλ

λ2n+1

∫ ∞
−∞

dφ exp

(
−1

2
φ2+ λ

6
φ3

)
(1)

which, when evaluated using a saddle-point approximation‡, gives the correct counting

Nn =
(

1

6

)2n
(6n− 1)!!

(2n)!!
. (2)

To include an Ising model we now decorate the vertices of the graphs with Ising spins
having a Hamiltonian

H = β
∑
〈ij〉
(σiσj − 1) (3)

where the sum is over nearest neighbour sites. The partition function is then given by

Zn(β)×Nn = 1

2π i

∮
dλ

λ2n+1

∫
dφ+ dφ−

2π
√

detK
exp(−S) (4)

whereK is defined by

K−1
ab =

(
1 −c
−c 1

)
(5)

and the action itself is a direct transcription of the matrix-model action [17] to simple scalar
variables

S = 1

2

∑
a,b

φaK
−1
ab φb −

λ

3
(φ3
+ + φ3

−). (6)

The sum in the above runs over± indices†. The couplingc = exp(−2β) and theφ+ field
can be thought of as representing ‘up’ spins with theφ− field representing ‘down’ spins.

† We will restrict ourselves toφ3 or 3-regular random graphs throughout. The saddle-point equations may still
be solved with larger numbers of neighbours, but become rapidly more complicated.
‡ Throughout this paper, and in previous work, we implicitly consider a saddle point inboth the couplingλ and
the ‘fields’ φ. It is also possible to evaluate theλ integration exactly, which is the approach taken by Whittle in
the graph-theory case [3] and Lipatov in the field-theory calculations [15]. The end results are identical.
† We have rescaled theφ’s with respect to [5, 6, 10] for uniformity with the Potts model notation.
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It is necessary to include the counting factorNn to disentangle the factorial growth of the
undecorated graphs from any non-analyticity due to phase transitions in the decorating spins.
One is also obliged to pick out the 2nth order in the expansion explicitly with the contour
integral overλ as, unlike the planar graphs of two-dimensional gravity,λ cannot be tuned
to a critical value to cause a divergence.

The mean-field Ising transition manifests itself in this formalism as an exchange of
dominant saddle points. Solving the saddle-point equations∂S/∂φ± = 0

φ+ = φ2
+ + cφ−

φ− = φ2
− + cφ+

(7)

(which we have rescaled to removeλ and an irrelevant overall factor) we find a symmetric
high-temperature solution

φ+ = φ− = 1− c (8)

which bifurcates atc = 1
3 to the low-temperature solutions

φ+ = 1+ c +√1− 2c − 3c2

2

φ− = 1+ c −√1− 2c − 3c2

2
.

(9)

The bifurcation point is determined by the value ofc at which the high- and low-temperature
solutions forφ are identical, which appears at the zero of the Hessian det(∂2S/∂φ2). The
magnetization order parameter for the Ising model can also be transcribed directly from the
matrix model [17]

M = φ3
+ − φ3

−
φ3+ + φ3−

(10)

and shows a continuous transition with mean-field critical exponent (β = 1
2). The other

critical exponents may also be calculated and take on mean-field values.
Simulations of the Ising model are in very good agreement with the analytical results

[5] even on asingle graph, which at first sight is rather surprising as the saddle-point
calculations are formally for an annealed ensemble of graphs. This appears to be true for
all models where one might expect self-averaging, such as ferromagnetic Ising and Potts
models—one large graph can be thought of as a collection of smaller graphs in these cases.
With spin glasses it is still obligatory to consider a quenched ensemble of random graphs
in order to take a (quenched) average over the disorder.

2. Potts models

The Hamiltonian for aq-state Potts model can be written

H = β
∑
〈ij〉
(δσi ,σj − 1) (11)

where the spinsσi take onq values. The matrix model actions for such Potts models are
well known (though only solved exactly so far forq = 3 [18]). For the 3-state Potts model
the action is

S = 1
2(φ

2
1 + φ2

2 + φ2
3)− c(φ1φ2+ φ1φ3+ φ2φ3)− 1

3(φ
3
1 + φ3

2 + φ3
3) (12)

which can be used as the action on thin graphs if one takes, as in the Ising case, theφ’s to
be scalar variables. For aq-state Potts modelc = 1/(exp(2β)+ q − 2).
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‘Ising-like’ solutions to the 3- and 4-state Potts models were presented in [6], the 3-state
case being

φ1,2,3 = 1− 2c (high T )

φ1,2 = 1+√1− 4c − 4c2

2
(low T )

φ3 = 1+ 2c −√1− 4c − 4c2

2
.

(13)

These high- and low-temperature solutions are equal at the zero of the Hessianc = 1
5.

Similarly, the 4-state Potts model has the action

S = 1
2(φ

2
1 + φ2

2 + φ2
3 + φ2

4)− c(φ1φ2+ φ1φ3+ φ1φ4+ φ2φ3+ φ2φ4+ φ3φ4)

− 1
3(φ

3
1 + φ3

2 + φ3
3 + φ3

4) (14)

and solving the saddle-point equations again gave Ising-like solutions

φ1,2,3,4 = 1− 3c (high T )

φ1,2,3 = 1− c +√1− 6c − 3c2

2
(low T )

φ4 = 1+ 3c −√1− 6c − 3c2

2

(15)

where the solutions matched atc = 1
7†. The picture is repeated for higherq, where the

action is

S = 1
2

q∑
i=1

φ2
i − c

∑
i<j

φiφj − 1
3

q∑
i=1

φ3
i (16)

and one finds a high-temperature solution of the formφi = 1− (q − 1)c, ∀i bifurcating to
a broken-symmetry solutionφi = . . . φq−1 6= φq at c = 1/(2q − 1).

These results are somewhat surprising on two counts. First, the motivation for using thin
graphs was that they provided easy access to mean-field results. However, it is known that
the mean-field theory for Potts models predicts afirst-order transition forq > 2. Secondly,
all the thin-graph results so far for various models have been identical to the corresponding
Bethe lattices, even down to non-universal features like the transition temperatures. Explicit
calculations on the Bethe lattice have also given first-order behaviour forq > 2 [19] and
shown the values ofc obtained above for the 3- and 4-state models correspond to spinodal
points on the Bethe lattice. The models hit a first-order transition before attaining these
points. One might therefore expect that a first-order transition should be lurking in the
saddle-point solutions for the actions above, given the previous tendency for the thin-graph
results to slavishly parallel the Bethe lattice.

The resolution of the conundrum is implicit already in the solutions in equations (13)
and (15) and their higherq equivalents. If we look at the Ising solution of equation (9)
we can see that the low-temperature branches become real exactly at the transition point,
whereas the square roots in theq > 2 Potts solutions first become real at largerc, and hence
higher temperature than that determined by the zero of the Hessian‡. The topology of the
phase diagram is perhaps best understood by plotting the magnetization againstc, which
we do in figure 1 for the Ising solution and in figure 2 for the 4-state Potts model (all other

† The right-hand side of the lowT solutions may be exchanged, as one might have expected on symmetry grounds,
and we have used this freedom to put the solutions in a more consistent form than in [6].
‡ The explicit formula is given in equation (26).
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Figure 1. The magnetizationm for the Ising model as calculated from the saddle-point solutions.
The high-temperature branch is shown dotted, the upper low-temperature branch full and the
lower low-temperature branch broken.

Q

QP

O

c
0.170.160.150.140.13

m

1

0.8

0.6

0.4

0.2

0

Figure 2. The magnetizationm for a 4-state Potts model as calculated from the saddle-point
solutions. The linestyles are as in figure 1 and only the portion of the graph close to the transition
point is shown for clarity.

q > 2 state models being of similar form). Low temperatures correspond to smallc and
high temperatures correspond to largec for all the Ising and Potts models. For conformity
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with the Potts notation we can define a Potts style magnetization for the Ising model as

m = φ3
+

(φ3+ + φ3−)
(17)

which gives the upper (full) branch of the low-temperature magnetization curve in figure 1.
Changingφ+ → φ− (or alternatively swopping the signs in front of the square roots in the
solutions of equation (9)) gives the second, lower (broken) branch. Both variants give the
same value for the horizontal (dotted) high-temperature solution withm = 1

2 asφ+ = φ−
there. We can see that the paramagnetic high-temperature solution bifurcates atO(c = 1

3)

to give the upper and lower magnetized low-temperature branches.
The equivalent magnetizationm for the Potts models is defined as

m = φ3
q(∑q

i=1 φ
3
i

) (18)

which givesm = 1/q on the symmetric high-temperature branch, shown by the dotted line
in figure 2. The standard Potts-model order parameter can then be defined as

M = qmax(m)− 1

q − 1
. (19)

which is zero in the high-temperature paramagnetic phase and tends to one in the magnetized
low-temperature phase.

The solutions of equations (15) give the lower (broken) branch in figure 2, descending
from the pointO at which the square roots become real. We can see that the magnetization
‘pitchfork’ of the Ising diagram becomes skewed forq = 4 (and all otherq > 2). The
most important feature is that the upper (full) branch does not connect continuously with
the (dotted) high-temperature solution, which joins the lower branch atP. The upper branch
is simply obtained for allq by choosing the opposite signs in front of the square roots
compared with the lower branch. As can be seen in figure 2 it corresponds to the true
low-temperature magnetized phase wherem → 1 (and henceM → 1) asT → 0. The
first-order transition, denoted by a vertical line with ends labelledQ in figure 2 takes place
when the free energy of the upper branch is equal to the free energy of the high-temperature
solution. In the saddle-point approximation the free energy to lowest order in the number
of verticesn is, up to constant terms, just the logarithm of the actionS so the first-order
transition point is given by thec value, and hence temperature satisfying

S(upper branch) = S(high temperature). (20)

As one can see in figure 2 as the temperature (i.e.c) is reduced, a first-order transition
intervenes between theQ’s beforeP is reached. Similarly, as the temperature is increased
from zero along the upper branch a first order transition occurs beforeO is reached. The
portions of the magnetization curvePO and the dotted horizontal line to the left ofP
represent unstable states, whereasPQ, QO and the lower broken branch to the left ofP
represent meta-stable states†. The meta-stable portions of the curve would be accessible
by superheating out of the magnetized phase (QO) or supercooling from the paramagnetic
phase (QP, P → origin). For completeness, we have listed the stable low-temperature
solutions forq = 3, 4, 5, 6 state Potts models in the appendix, which are theq values
simulated in the next section.

† These considerations, and indeed the two figures, are essentially identical to those for the Bethe lattice in [19].
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Various features of the solutions merit discussion. Equation (20) can be solved
analytically for moderateq values onφ3 graphs without too much difficulty, and all the
solutions fit the following compact formula for the critical value ofc at Q

c(Q) = 1− (q − 1)−1/3

q − 2
. (21)

Indeed, if one takes the conjecturedq-state solutions in the appendix it is possible to write
down the saddle-point action on the (upper) low-temperature branch in terms ofφ = φ1...q−1

and φ̃ = φq by substituting them into equation (16)

S = 1
2(q − 1)[1− c(q − 2)]φ2− 1

3(q − 1)φ3+ 1
2φ̃

2− 1
3φ̃

3− c(q − 1)φφ̃ (22)

and similarly on the high-temperature branch

S = q

2
(1− c(q − 1))φ2

0 −
q

3
φ3

0 (23)

whereφ0 = 1− (q−1)c. Setting (equation (22)) and (equation (23)) equal, one also obtains
the samec(Q) as in equation (21) above.

It is possible to calculate the jump in the magnetization1M along the vertical line at
Q and one finds in all cases

1M = q − 2

q − 1
. (24)

If one now refers back to the Bethe-lattice calculations of [19] one can see that1M is
identical to that observed on the Bethe lattice. In addition, allowing for the differences in
conventions†, the formulae for the critical couplingc(P ) in equation (22) is also identical
to that for the Bethe-lattice transition. The zero of the Hessian for theq-state Potts-model
action gives us the value ofc at P where the high-temperature solution joins the lower
branch

c(P ) = 1

2q − 1
(25)

and if we assume that the conjecturedq-state low-temperature solution in the appendix is
correct, we can also calculate the value ofc at O where the square roots become real

c(O) = q − 1− 2
√
q − 1

(q − 1)(q − 5)
(26)

(q = 5 can be handled by taking the limitq → 5). Asq is increased the separation between
points O and P increases. In table 1 below we list for convenience thec values of points
O, P andQ for the q = 3, 4, 5, 6 state Potts models.

Table 1. The c values for the pointsO, P, Q along with βcrit for q = 3, 4, 5, 6 state Potts
models.

q c(O) c(P ) c(Q)

3 0.207 11 0.200 00 0.206 30
4 0.154 70 0.142 86 0.153 32
5 0.125 0.111 11 0.123 35
6 0.105 57 0.090 91 0.103 80

† The θ of [19] is equal to exp(−2β) in our notation.
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Table 2. The estimatedβcrit, along with the calculatedβ(Q), β(O), β(P ).

q

3 4 5 6

βcrit 0.674(2) 0.75(1) 0.81(1) 0.87(1)
β(Q) 0.673 69 0.754 51 0.815 33 0.864 41
β(O) 0.671 22 0.748 04 0.804 72 0.849 86
β(P ) 0.693 15 0.804 70 0.895 88 0.972 95

The values ofc(O) and c(P ) that we have found are again identical to those on the
Bethe lattice.

Two further general points should be remarked on. First, we have notexplicitly
considered connected graphs in our calculations but, just as in the path-integral calculations
utilizing saddle-point methods [20], the leading-order (inn) contribution to the partition
function comes from connected graphs—the disconnected components being suppressed by
factors of 1/n. There is thus no need to take the logarithm of the partition function to
obtain a connected expression. The graphs used in the simulations were also generated by
an algorithm that ensured their connectedness. Secondly, the Hessian of our solutions has
one (and only one) negative eigenvalue. This is also familiar from quantum-mechanical [13]
and field-theoretical [14, 16, 20] saddle-point calculations and has been remarked upon by
Whittle too [3]. In essence, we are minimizing our action restricted to its stationary points
(the saddle-point condition) [21], which isnot equivalent to finding an absolute minimum
of the action when it is unbounded below, as is the case here. This would still hold for
quartic, or generically even, potentials as the large-orders behaviour is obtained in such
cases by analytical continuation to unstable negative coupling values.

3. Simulations

The acid test of the saddle-point solutions is whether they match up with simulations.
We do not attempt a high-accuracy verification of the analytical results here, but rather a
consistency check on the first-order nature of the transition and a verification of the values
for c(Q) and1M calculated in the previous section. To this end we generated single
φ3 graphs with 250, 1000 and 2500 vertices for each of theq-state models. We verified
the results by repeating all the simulations on a second, different graph for each size with
identical results within the error bars in all cases.

The generation of the graphs is easier than the planarφ3 graphs used in two-dimensional
gravity simulations because of the absence of a constraint on the topology. This obviates the
need to use (for instance) Tutte’s algorithm in producing the graphs. The simulation itself
used the Wolff algorithm, which will not beat the super-exponential slowing down right at the
first-order transition point, but is expected to be efficient elsewhere. We simulated a range
of β values, allowing 20 000 equilibration sweeps followed by 20 000×N cluster updates,
whereN was O(10)—the exact value depending on the mean cluster size. Measurements
were made everyN cluster updates of all the standard thermodynamic quantities, the energy
E, the magnetizationM, specific heatC and magnetic susceptibilityχ . We also measured
various Binder’s cumulants for the magnetization〈M4〉/〈M2〉2 and energy〈E4〉/〈E2〉2 as
well as correlation functions and autocorrelations.

We focus our attention first on the magnetization curves for the various models, which
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Figure 3. The magnetizationM (= (qmax(m)−1)/(q−1)) for a 3-state Potts model as measured
in the simulations. The saddle-point solution is shown as a broken curve. The horizontal bar
represents the height of the ‘jump’ 0→ 1M in the magnetization. The error bars are too small
to be seen in all but the central points.

Figure 4. The magnetizationM for a 4-state Potts model as measured in the simulations. Key
is as in figure 3.
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Figure 5. The crossing of Binder’s magnetization cumulant for the 3-state Potts model as
measured in the simulations.

are presented, with fortuitous numbering, in figures 3 and 4 for theq = 3, 4 state models
on graphs with 250, 1000 and 2500 vertices. The smaller graphs display greater finite-size
rounding, but by the time one has got to 2500 vertices the agreement with the magnetization
calculated from the saddle-point solutions (which are formally for an infinite number of
vertices) is already quite good. On both plots we have delineated the expected critical
points and jumps in the magnetizations. This agreement deteriorates somewhat for a given
lattice size asq and hence the strength of the transition increases. Theβcrit for various
q are estimated from the simulations by looking at the crossing of Binder’s magnetization
cumulant〈M4〉/〈M2〉2 for the various graph sizes. As one can see in figure 5 for the 3-state
Potts model (which is representative) the errors in the measurement of the cumulant are
quite large, but even given this the estimated critical temperatures are all close to those
calculated in the saddle-point approximation. We also list theβ values for the two spinodal
pointsO andP for comparison. As one can see even the rather modest simulations carried
out here are sufficient to show that the spinodal pointP can be excluded as the transition
point in all cases. The results for all but the 3-state model cannot definitively exclude the
other spinodal pointO as the critical point, but the first-order nature of the transition and
the value of the jump in the magnetization, as discussed below, favour a transition atQ as
predicted by the saddle-point calculations.

The1M values are estimated by eye-balling the magnetization curves for the largest
graphs and are consequently to be taken with a larger pinch of salt than the other
measurements, but they are all consistent with the(q−2)/(q−1) calculated in the previous
section. We tabulate the results for the magnetization jumps measured from the simulations
below in table 3 along with(q − 2)/(q − 1) for comparison.

Further confirmation that the transitions are indeed first order can be obtained by looking
at the values of the Binder’s energy cumulant nearβcrit. This is expected to scale to23 for
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Table 3. The estimated1M along with the calculated(q − 2)/(q − 1).

q

3 4 5 6

1M 0.50(5) 0.68(1) 0.72(5) 0.9(2)
(q − 2)/(q − 1) 0.5 0.666 67 0.75 0.8

Table 4. The values of Binder’s energy cumulant at the estimatedβcrit.

q

3 4 5 6

〈E4〉
〈E2〉2 0.664 0.65 0.64 0.60

Figure 6. The energy for a 4-state Potts model as measured in the simulations. The position of
the transition as calculated in the saddle-point approximation is shown again as a dotted line.

a continuous transition and a value less than2
3 if the transition is first order. The values

are listed in table 4 and show a clear tendency to decrease aroundβcrit that grows stronger
with increasingq.

The energy itself is calculable fromE = −∂ logZ/∂β and is discontinuous at a first-
order transition. One finds values that are again in good agreement with the simulations by
the time one has reached 2500 vertices. The measurements for the 4-state Potts model are
shown in figure 6. In a similar vein quantities such as the specific heatC = β2(∂2 logZ/∂β2)

or the magnetic susceptibility may be calculated from the saddle-point solutions and all
give very satisfactory agreement with the measured quantities in the simulations. We do
not describe these here as it is clear from the results already presented that, even given the
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limitations of the fairly modest simulations, there is ample support for the correctness of
the saddle-point solutions and the picture of the first-order transition that they suggest.

Finally, we note that something akin to a standard finite-size scaling analysis is possible
with the thin-graph approach to simulations, as witnessed by the use of the Binder’s cumulant
to estimate the critical temperature in this work. The place of the factorL−1/ν that appears
in finite-size scaling on standard lattices, whereL is the linear size of the lattice, is taken
by n−1/νd wheren is the number of vertices in the graph. Althoughd is formally infinite,
the combinationνd is still well defined and all the scaling relations may be written in terms
of this. Entirely analogous tactics have been used in the analysis of simulations of spin
models in planar diagrams in theories of two-dimensional gravity, whered in this case was
a dynamically generated fractal dimension that wasa priori unknown. On the analytical
side 1/n corrections may be obtained (and have been obtained already for the Ising model in
[5]) by calculating the determinantal corrections to the saddle-point solutions, so corrections
to scaling can be obtained. Such issues would be worth pursuing if very high accuracy
verification of the correspondence between calculation and simulation were required.

4. Discussion

Our previous analytical and numerical work [5, 6, 10] on spin models on Feynman diagrams
had concentrated on the case of continuous transitions. The results in this paper show that
the simple saddle-point equations that determine the phase structure of such models are
also adequate to describe first-order transitions. In the continuous case the critical point
was pinpointed by finding the zeros of the Hessian and corresponded to a bifurcation of
magnetized states from the unmagnetized high-temperature solution. This gives one the
lower-temperature spinodal pointP in the Potts models, the true first-order transition point
at Q being determined by matching the saddle-point actions (i.e. free energies) on the two
branches of the solution. The upper spinodal pointO is fixed as the point at which a square
root appearing in the low-temperature branches becomes real.

The critical temperatures we have calculated, the jump in the magnetization and the
magnetization curves themselves are identical to the results obtained in [19] on the Bethe
lattice. We thus conclude that the (mostly large) loops that are present in the Feynman graphs
have no effect on the critical behaviour of ferromagnetic Potts models by comparison with
the corresponding Bethe lattices. This is consistent with the earlier work on continuous
transition which also demonstrated Bethe-lattice-like results. The loops will, however, have
an effect in the antiferromagnetic models considered in [19], where a two-step invariant
measure which presupposes a bipartite lattice was instrumental in the solution. As already
noted in [5] for the antiferromagnetic Ising model, loops of both even and odd length are
present in the Feynman diagrams, so frustration will be present onφz graphs ifq < z.
This apparently leads to a spin-glass phase rather than antiferromagnetic order. In matrix
models it is possible to arrange only even sided polygonations by using complex rather than
Hermitian matrices, but it is not clear to us how to perform a similar trick on generic—rather
than planar—Feynman diagrams.

We find it rather remarkable that it is possible to write down the actions in equations (22)
and (23) for both the high- and low-temperature branches for arbitraryq, based on the
ansatz for theq-state solutions in the appendix. This is on a par with the results in [6]
for the Hessian of an arbitrary number of Ising replicas on thin graphs. The availability
of a solution whereq appears explicitly as a parameter opens the possibility of exploring
the q → 1 limit of the model, related to percolation, which we will address in a further
publication. The percolative transition on the Bethe lattice has some unusual features [22],
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which one might also expect to manifest themselves on thin graphs. The behaviour of the
model in an external field, considered in some detail on the Bethe lattice in [19], can also be
investigated with the thin graph formalism both analytically and numerically without much
by way of complications over the results presented here.

First-order transitions also appear in the so-called Ising replica magnet [23], the finitek

version of thek-Ising replicas used in taking thek→ 0 limit (‘replica trick’) with quenched
disorder. In these models on thin graphs the spin-glass-transition temperature appears as
a sort of spinodal point [6] for allk > 2, with the transition being continuous fork = 2.
A first-order (in the overlap) transition intervenes before the putative continuous spin-glass
transition is reached fork > 2. If it were not for this, one would be tempted to argue that
the k → 0 limit for the spin-glass-transition temperature was trivial, as it is the same for
all k. The role of the first-order transition to a replica symmetric state whenk > 2 and
the nature of thek → 0 limit for thin-graph models thus requires further elucidation. It is
possible that the Potts-models results presented here may cast some light on its properties.

The numerical work in this paper was intended as a consistency check of the formalism,
rather than a full scale numerical investigation and finite-size scaling analysis of the models.
Nonetheless, it is clear from the results presented that the transitionsare first order as
predicted. The agreement between the simulations and the saddle-point calculations for the
critical temperatures and the observed jumps in the magnetizations are very satisfactory
even on graphs with 2500 vertices.

In summary, we have seen that the thin-graph approach is a convenient way of
performing calculations and simulations for mean-field Potts models with first-order phase
transitions. Such models, as well as being of interest in their own right, may help in
understanding mean-field spin-glass and percolative transitions.

Appendix

We list here the low-temperature solutions (upper branch in figure 2) for theq = 3, 4, 5, 6
state Potts models which are referred to in the text. Note that the solutions appear to follow
a regular pattern and we have indicated the conjecturedq-state solution (which fits the
cases listed below, the Ising modelq = 2, and all the other higherq solutions we checked
explicitly before exhaustion set in) at the end. Just as for the lower-branch solutions where
the signs in front of the square roots are reversed, the right-hand sides of the solutions can
be exchanged for a givenq.

3-state

φ1,2 = 1−√1− 4c − 4c2

2

φ3 = 1+ 2c +√1− 4c − 4c2

2
.

4-state

φ1,2,3 = 1− c −√1− 6c − 3c2

2

φ4 = 1+ 3c +√1− 6c − 3c2

2
.



7362 D A Johnston and P Plech´ač

5-state

φ1,2,3,4 = 1− 2c −√1− 8c

2

φ5 = 1+ 4c +√1− 8c

2
.

6-state

φ1,2,3,4,5 = 1− 3c −√5c2− 10c + 1

2

φ6 = 1+ 5c +√5c2− 10c + 1

2
.

q-state

φ1...q−1 = 1− (q − 3)c −
√

1− 2(q − 1)c + (q − 5)(q − 1)c2

2

φq = 1+ (q − 1)c +
√

1− 2(q − 1)c + (q − 5)(q − 1)c2

2
.
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